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Abstract. The infinite-U Hubbard model with two holes an a two-dimensional square 
lattice is explicitly studied. We show that the energy of the Nagaoka state and the exact 
ground state become degenerate in the thermodynamic limit, i.e. there exists no energy 
gap between the ground state and the first excited state. Finally, we discuss briefly how to 
generalize this resdt to cases in which there is a finite number of holes and the structure 
of the lattice is more complicated. 

Since the discovery of superconductivity in the rare-earth-based copper oxides, there 
has been growing interest in the Hubbard model. The physics of this model is complex 
and far from being fully understood. Nagaoka's theorem [l-51 is one of few rigorous 
results known to physicists. The Hamiltonian of the Hubbard model has the following 
simple form: 

H =I t,cLcj,+ U ni+nil (1) 
LI (9) 

where cTm(cjv) and n ,  are, respectively, creation (annihilation) operators and number 
operators of electrons with spin U. Nagaoka's theorem tells us that the ground state 
ofthe Hubbard model has the maximum total spin when U is infinite and the following 
conditions are satisfied: 

(i) there is exactly one hole; 
(ii) the lattice can be divided into two sublattices such that fv is always zero if 

(iii) f, 3 0. 
As far as the multi-hole cases are concerned, there are still no rigorous results 

known. Recently, these cases have been vigorously discussed in the literature [6-91. 
There is some numerical evidence which indicates that the energy of the Nagaoka state 
and the exact ground state become degenerate in the thermodynamic limit [7]. In this 
paper, we shall give this conjecture a rigorous proof. 

both i and j belong to the same sublattice; 

Let us first introduce some preliminary definitions. 

Definition I .  We denote simple cubic lattice by sc, body-centred cubic lattice by BCC, 
face-centred cubic lattice by FCC and hexagonal close-packed lattice by HCP. 

Definifion 2. We call a lattice A divisible with respect to the Hubbard Hamiltonian 
(1) if it can he divided into two sublattices A and B such that 

(i) each site of A belongs to either A or B ;  
(ii) if sites i and j belong to the same sublattice, say A, then $ = O .  

< I ,  
41.l 

-...< ..",,/". ,"...<.. , Cn .--. .A.. n~LI:^L:__ I .A 
"a",-w;i"/.,,/"'",r,T"~J",._I" 1.171 1°F rYo113111116 LI" 
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Definition 3. Let A be a sublattice. We define N,, to be the number of sites in A, N, 
the number of the up-spin electrons, N,  the number of the down-spin electrons and 
N. = N, + N,  the total number of electrons. n = N ,  - Ne is naturally defined to be the 
number of holes when it is positive. 

Since the Hubbard Hamiltonian preserves Nt and NI, we can divide all the possible 
electron configurations into several disconnected sectors. In each sector, N, and N, 
are specified integers. In particular, we call the sector, in which all the electrons have 
up-spin, the all-spin-up sector (ASUS). 

Definition 4. The Nagaoka state is defined to be the eigenstate corresponding to the 
lowest eigenvalue of the Hamiltonian restricted in the all-spin-up sector. 

Remark. By definition, the Nagaoka state may not be the exact ground state of the 
Uubbard made!. On!y fa: the a"c=ho!e case have !hey bee:: p rvxd  identica! [2j, 

Our main result is the following theorem. 

Theorem. Let A be a finite sublattice. Assume that 

(2) 
if sites i and j are the nearest neighbours 

f.. = 
" I:, otherwise. 

Suppose that 
(i) U = m  
(ii) n = N ,  - N,P 2 but finite; 
(iii) the parameter f is positive for an FCC or HCP lattice, and either positive or 

negative for an sc or BCC lattice. 
Then the energy of the Nagaoka state and the energy of the exact ground-state 

approach to the same limit as the sublattice tends to infinity in Van Hove's sense. 
Furthermore, the thermodynamic limit of the energy is -nzt where z is the number of 
nearest neighbours of each site of A. 

Some remarks are in order. 

Remark 1. For an sc or BCC lattice, the sign of f does not really matter since they are 

canonical transformation can reverse this sign but leaves the spectrum of the 
Hamiltonian unaffected. For an indivisible FCC or HCP lattice, the positive condition 
on t cannot be relaxed. Readers can find a detailed discussion in [2]. 

Remark 2. To avoid unnecessary nuisance, we do  not give the phrase 'lattice A tends 
to infinity in Van Hove's sense' a mathematically rigorous definition. Roughly speaking, 
lattice A would grow like a balloon rather than a sausage. 

with ;espcc: := :he Hnbba;d Haei!:=nian with f.. defined in (21, A p;=pe; 
'I 

The strategy of our proof can be outlined as follows. Let EJA) be the energy of 
the exact ground state. We first seek some lower and upper bounds to EJA). Then 
we take the thermodynamic limit. To find a lower bound, &(A), to E @ ) ,  we write 
the Hubbard Hamiltonian in a suitable matrix form and then use the technique which 
we developed in [SI. For the upper bound to E&), we use the variationai principie. 
Notice that EJA) bounded above by the energy of the Nagaoka state EN,(A) for the 
lowest eigenvalue of the restricted Hamiltonian in a sector is never less than the lowest 
eigenvalue of the total Hamiltonian. Then, by the variational principle, ENn(A) is less 
than the energy of some proper trial state vector, ETr(A). 
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For simplicity, we shall only consider the Hamiltonian on a two-dimensional square 
lattice with two holes in the following. The proof can be easily extended to more 
general cases. 

Before proving this theorem, we  would like to introduce several notations and 
collect some simple facts which will be useful. 

( a )  Let A be an M ,  x M2 two-dimensional square sublattice, where M ,  and M 2  are 
integers. For convenience, we impose the open boundary condition on A. Choose a 

to each lattice site. We can now define an order among the lattice sites. In the following, 
we shall assume the alphabetical order, i.e. site i = (xI, y,) is ahead of site j = (x2, y2) 
if 

- : . - - C A  --*h--L-:..et ..a:..+ TL-- - - - : - - ~ : - * " ~ ~ - - ~ - - ~ ~ - " ~ " "  i.. . , \ - - - h e  ---:--aA 
>,IC: UL 11 a> Lllci u"~L"ni p'y"'L. l l L G l l 1  parr U, ,,,,G&G, CuULuIIIaLTD {A, y, ca,, "G a . " " ' & L 1 c u  

(i) x , < x , , o r  
(ii) x, =x2 but yI < y 2 .  
( b )  As. !I =a, there can be st most one e!cc!ron st  e& site. 
( c )  Each sector of the electron configurations can be marked by a pair of integers 

( N ,  , N , )  such that 

Ne= N t +  N , .  (3) 

In sector ( N , ,  N , )  = ( n ,  , n2) .  a complete set of orthogonal and normalized state vectors 
can be defined in the following way 

h-2  + 
9 { h k , a ) = ( - 1 ) h - ' ( - 1 )  c l , r ( l ) . . .  C ~ - , , r i h - I ) C : + l . ~ ( h + l ) .  . . c l - l , r i k - l )  

x C:+l.u(r+l). , . CtN,,W,,IO) (4) 

(5 )  

where h and k are the positions of holes and a denotes the spin configuration 

{u(l), . . . , u ( h  - l ) ,  ~ ( f i  + l) ,  . . . , u ( k -  l ) ,  u ( k +  l ) ,  . . . , u ( N J ) .  

The phase factor is introduced for a purpose. 

matrix form: 
In terms of this basis, the Hubbard Hamiltonian can be written in the following 

H ( N A - ~ , O )  
O \ (6)  

1. 
H ( N A - ~ ,  1 )  

0 H(O, N A - ~ )  

fi- 

Each submatrix is a square matrix. 
( d )  For a specified submatrix H ( n , ,  n2) ,  we now calculate its elements. Since the 

Hamiltonian contains only hopping terms, a non-zero element must be either --I or f. 
If two state vectors 9 and Q contribute a non-zero matrix element ( Y I H ( n , ,  n2)lQ), 
then we call them super-neighbours (sN). It is obvious that a hole at site k in 9 should 
appear at a nearest neighbour site of k in Q, if 9 and Q, are SN. In a two-dimensional 
square sublattice, each site has z = 4 nearest neighbours. Therefore, any state veclor 
9 can have at most 22 = 8 SN (there are two holes). In other words, there are at most 
21 non-zero elements in each row of the submatrix H ( n , ,  n 2 ) .  

Funhermore, if the non-zero matrix eiemeni is -i, we caii Y and G good super- 
neighbours (CSN). Otherwise, they are called bad super-neighbours ( B S N ) .  Rewriting 
the Hamiltonian in the form 

H = X  1 tc ;c jw=1  ( - t )c ,&L (7) 
D (U) '7 ( W  
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one can easily see that a state vector @ is a BSN of 9 if, and only if, the order of holes 
in @ and V is reversed. 

Let the positions of two holes be h = (x,, y , )  and k = (xz, y 2 )  in V. To calculate 
the non-zero elements contributing from SN of 'Y, several cases have to be considered 
separately. 

(i) Ix,-x,1*2 (see figures I ( n )  and l ( b ) ) .  In figure l ( a ) ,  both holes are in the 
interior of A, i.e. x,, xz + 0 or M ,  . In this case, each state vector has 22 = 8 CSN. 

Therefore, the corresponding row in H ( n , ,  n2)  contains exactly 22 non-zero elements 
( - t ) .  We shall use N,= to denote the total number of such state vectors in the all-spin-up 
sector (ASUS). 

In figure l ( b ) ,  one of the holes is on the boundary. In this case, V has fewer than 
22 GSN. For instance, the state vector corresponding to figure l ( b )  has 22 - 1 = 7 GSN. 

Let N,h be the number of such state vectors in ASUS. Then 

NIhS 2( M ,  + M 2 ) N A .  (8) 

(Fix a hole on the boundary. Another hole can occupy any position two blocks away. 
The number of these positions is certainly less than N,, . For the fixed hole, there are 
2( M ,  + M 2 )  positions available.) 

Next, we consider the state vectors Vs represented by the configurations in which 
Ix,-x,l=o or 1. 

(ii) Ix, -x21 = 0 (see figure 2). A state vector V satisfying this condition has several 
BSN and hence fewer than 22 GSN. For example, the state vector corresponding to the 

0 1 2 3 4 5 6 7  0 1 2 3 4 5 6 7  
2 2 

Figure 1 ( a )  lx,-x,122 and both holes are inside of A. ( b )  Ix,-x,l*2 and one hole is 
on the boundary of A. *=electron: 0 =hole. 

5 

4 

3 

2 

1 

Y 

0 1 2 3 4 5 6 7  
2 

Figure2. Ix,-x,/=O. .=electron; -=hole.  
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configuration shown in figure 2 has two BSN and 2z - 2 = 6 GSN. Let N,, be the number 
of such state vectors in ASUS. Then 

N ] , S  M : M ,  = M,N,, .  (9) 

(iii) Ixl-x21=l (see figures 3 ( a )  and 3 ( b ) ) .  Most of the state vectors satisfying 
this condition have some BSN and hence fewer than ~ Z G S N  (figure 3 ( a ) ) .  But some 
of them have fewer than 22 GSN because of  topological restriction (figure 3 ( b ) ) .  Let 
,,IC l lU l l lUCl  "L U l C  31'llC " ~ L L U L S  a ' u b r y l n g  S"IIUILI"II ( , I , ,  111 ASUS "L: 1*11,. I l l G i l l  
IL^ L^_ ̂ C A I . ^  ^I^.^ .^__ --*:-c..:-- -- ...I:.:-- ,:::, :.. L- LI ma.. 

NII,S M : M ,  = M2N, , .  (10) 

The above analysis is lengthy but otherwise straightforward. For the higher- 
dimensional and more general lattices, similar conclusions can be easily obtained. We 
shall use these results to derive an upper bound to the energy of the exact ground state. 

5 

4 

3 

Y 2  

1 

C 

5 

4 

3 

e 
1 

Y 

1 1 3 4 5 6 7  0 1 2 3 4 5 6 7  
z 2 

(e) By means of the creation and annihilation operators, we can write the total 
spin operator and its z-component operator in the following form [5]: 

S,='C( nit-n,J. (12) 

A little algebra shows that any state vector in ASUS 

Yhk=(-l)h-'(-1)k-2C:. . .  C ~ - I C ~ + ~ .  . . C l - l C l + ~ .  . . CfN,%IO) ( 1 3 )  

(we have dropped index a for all the spins are up in this state) has 

S,=S,,,,,=S,,,=fN,=f(N,-2). (14) 

Therefore, as a linear combination of these state vectors, the Nagaoka state has the 
maximum total spin. 

Now, we are ready to prove our theorem. 
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ProoJ We first show that 

EK(A)2-2zt=-8f. (15) 
Since the Hamiltonian matrix has the block structure shown in (6), the energy of 

the exact ground state must be the lowest eigenvalue of some submatrix H ( n , ,  n2). 
Let D be the number of rows (columns) of H ( n , ,  n2). Take an arbitrary eigenvalue A 
of H(n,,  n l ) .  There is a non-zero vector U, such that 

H(n,,  n2)uA = Au,. (16) 
Suppose that luml is the maximum of the absolute values of the components of U*, i.e. 

Consider the mth row of equation (16), 
n 

Using the definition of I u , , ~ ,  we obtain the following inequality: 

Therefore, 
D 

l A l S  1 /Hm,1s2zt. (20) 
"-1 

In (ZO), we used the fact that, in each row of H ( n , ,  n 2 ) ,  there are at most 22 non-zero 
elements - t  or f (see the discussion in ( d )  above). 

Since H(n,,  n2)  is Hermitian, any eigenvalue of it must be real. Inequality (20) gives 

A 2 -2zt. (21) 

EJA) 2 -221. (22) 

In particular, it holds for the lowest eigenvalue of H(n,, n2) ,  EK(A), i.e. 

Next, we seek an upper bound to Es(A). 
E8(A) is trivially bounded above by ENa(A). On the other hand, the variational 

principle tells us that 

over the all-spin-up sector. Choosing the following trial vector 

and inserting it into (23), we get 
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The denominator in (25) is simply the dimension of ASUS. It is the number of ways 
in which one can choose two sites from N, sites: 

The estimate of the numerator is a little cumbersome but straightforward. 
Let NE and Nb be the numbers of pairs of GSN and BSN in ASUS, respectively. Then 

= -2tNE+2tNb. (27) 

From the discussion in (d) ,  we see that each state vector in ASUS represented by 
The factor 2 is from double counting in the sum. 

figure l (a)  has ~ Z G S N  and no BSN. Therefore 

On the other hand, each state vector in ASUS represented by figures l (b ) ,  2, 3(a) and 
3(b)  contributed fewer than 2z or zero BSN and hence 

The sum in the first term is the number of all the possible state vectors in ASUS and 
thus the dimension of ASUS, CkA. The sum in the second term is less than 4M2N,,+ 
2M, N,, using the conclusions of discussions in (d(i)-(iii). Therefore, 

(31) (Y,r ,  H(NA-2, O)’PCr) S (-~z~)C~,,+~~Z~M~N,+SZ~MI N,,. 

Substituting (26) and (31) into (251, we obtain 

EJA) s E N ~ ( A )  
-2ztCL,+ 16ztM,N,+8ztM,N,, s 

Ck, 

32ztM2 N,, + 16ztM, N,, 
N,t( NA - 1 ) 

= -2zt+ 

Combining (22) and (32) yields 
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Letting A tend to infinity in Van Hove's sense, i.e. 

where K is a constant, the thermodynamic limit of the energy of the exact ground 
state is obtained 

We would like to make some remarks. 

Remark 1 .  Noticing that the energy of the ground state in the one-hole case is -zt 
[ 5 ] ,  it would be safe to say that, for U = m ,  holes tend to avoid each other. In this 
way, each hole can he regarded almost independent, and each of them contributes the 
same amount to the energy of the ground state. 

Remark 2. This theorem can be easily generalized to more complicated cases by 
mimicking the above proof. 

Suppose that there are n holes ( n  is a finite constant integer) and the Hubbard 
Hamiltonian is defined on a d-dimensional sc, BCC, FCC or HCP lattice. We impose 
the open boundary condition on the system and order the lattice sites by alphabetical 
order. We now define a set of orthogonal and normalized state vectors by 

W{i,,. ,in;=]- - ( - l ) t h - I  . . . (-l)-C:,", . . . c;-l,",,+c:+,,m,s+, 

. . . c:-,.","-,c:+Lr,"+, . . , c+N.owAIo) (36) 

where {i,, . . . , i n }  are the positions of holes. Under condition (2) imposed on any 
state vector 'P,~~, , , , , jn~ml can have at most nz SN. When N,, is sufficiently large, there is 
at least one state vector which has nz SN. Therefore, without ado, we get 

Eg(N,) - -nzf .  (37) 

On the other hand, by the variational principle, E,( N,,) is bounded above by 

where W , , = Z , j  ,,..,, b J  W{; ,,.,., ;,,, belongs to ASUS. The denominator ('€',clW,r) simply equals 
Ch,, , We shall concentrate on calculating the numerator in the following. 

From the above proof, we see that, when N,, is sufficiently large, the majority of 
the state vectors should have exactly nz GSN. Only a few state vectors have BSN or less 
than nz GSN because some holes are 'too close' to each other or on the boundary of 
lattice A. We shall call them the state vectors with defects. A little algebra shows that 
the numerator is bounded above by 

-nzfCk,,+ K ,  {number of state vectors having defects} (39) 

where K ,  is a constant independent of N,, .  Unlike the two-hole case, a hole-inter- 
changing does not necessarily contribute a positive matrix element 1. As a matter of 
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fact, when a hole changes positions with an even number of holes, the corresponding 
matrix element (TIHI@) is still - f .  Such subtleties make calculation of the quantity in 
the braces of (39) very difficult. Fortunately, we may ignore them. A crude estimate 
on the number of the state vectors having defects is good enough for our purpose. Let 
us assume that any pair of state vectors T and @ contributes a positive non-zero matrix 
f if some holes change their positions in T and @. It is obvious that, under this 
assumption, the number of state vectors having defects is greatly inflated. We now 

a constant independent of N,, . We first take two holes and put them 'close' enough 
such that their changing positions produces BSN.  Then, we fix their positions and let 
the rest of holes occupy the remaining lattice sites arbitrarily. The total number of 
such configurations is CnN;L2. Finally, we move that pair of holes around but still keep 
them 'close'. Using the conclusions of (d) in the proof, we see that this operation 
produces another factor which is less than K2( N,,)2-1'd. Therefore, expectation ( 3 8 )  
is bounded above by 

argue that this inflated quantity is bounded above by K,Ck;?,(N,,) 2 - l l d  , where K 2  is 

The second term of (40) is of order (N,)-"" when N,,  is sufficiently large. Taking the 
thermodynamic limit, we obtain 

lim E8( N,,) = - 
A-- 

- nzf. (41) 

Obviously, the above argument can be made rigorous. 
Although we do not obtain the exact ground state of the infinite- U Hubbard model 

with more than two holes in this article (numerical results show that the Nagaoka's 
state cannot be the ground state for a finite size sample), our result does indicate that 
there is no energy gap between the ground state and the first excited state in the 
thermodynamic limit. 
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